Discovery of Allosteric, Potent, Subtype Selective, and Peripherally Restricted TrkA Kinase Inhibitors

Sharan K. Bagal, Kiyoyuki Omoto, David C. Blakemore, *et al. J. Med. Chem.*, **2018**, Article ASAP

Steph McCabe Wipf Group Current Literature 12th May 2016

Acute and Chronic Pain

 Pain: is a symptom produced when inflammation or changes to the nervous system due to illness/ injury are transmitted to the brain, producing a physical sensation that alerts the brain that damage has occurred.

- **Chronic pain:** is generally defined as any pain lasting >12 weeks
 - Includes headache, lower back pain, cancer pain and arthritis
 - Chronic pain is the #1 reason Americans access the health care system.
 - Affects ~100 million adults in the US
 - Estimated annual cost of US \$560–635 billion.

Pain Pathway/ Gold Standard Analgesics

- Non-steroidal anti-inflammatory drugs (NSAIDs) e.g. aspirin, ibuprofen
- Opioids e.g. morphine, oxycodone

- Antidepressants
- Anticonvulsants
- Local Anesthetics

Unmet Need for Safe and Effective Pain Medication

- Current gold standard analgesics are often ineffective and/or have side effects (e.g. Gl/renal side-effects for NSAIDs and psychotropic for opioids)
- Opioids killed more than 33 000 people in 2015, more than any year on record

Role of NGF & TrkA in the Pathogenesis of Inflammatory Pain

- NGF levels are elevated in response to chronic pain, injury and inflammation
- Administration of exogenous NGF induces pain in humans
- People with null mutations in TrkA and NGF genes develop congenital insensitivity to pain
- Inhibition of NGF function by anti-NGF antibodies and small molecule Trk inhibitors has shown efficacy in animal and human pain models *e.g. anti-NGF monoclonal antibody Tanezumab (Pfizer/Eli-Lily)*
- TrkA kinase inhibitor efficacy is expected to be driven by target engagement in peripheral neurons.
- Trks are broadly expressed in the brain
 - Regulate cholinergic activity, excitatory signaling and feeding/ body weight
- Clinical CNS side effects (cognitive deficits, personality changes and sleep deprivation) have been noted in an oral pan-Trk/Tie2 kinase inhibitor.

CNS concerns/Peripheral Restriction

<u>Goal</u>: Orally bioavailable small molecule Trk inhibitor with minimal brain availability

- High absorption across the GI epithelium (MW<500, PSA<140, <10 rotatable bonds)
- Good substrates for blood-brain barrier (BBB) efflux transporters (e.g. P-gp, BCRP)
- Exquisite kinase selectivity (target an allosteric binding pocket)

Desired peripheral restriction profile: Free brain/ free plasma ratio $(C_{b,u}/C_{p,u}) \le 5\%$

Classification of Kinase Inhibitors

<u>Type I kinase inhibitors</u> –bind to the active form (activation loop is phosphorylated)/ target the ATP binding site <u>Type II kinase inhibitors</u> –bind to the inactive conformation/ target the ATP binding site and an allosteric 'DFG out' hydrophobic pocket immediately adjacent to the region occupied by ATP

<u>Type III kinase Inhibitors</u> – bind next to the ATP binding pocket <u>Type IV-VI</u> also known

- Type I and Type II binders tend to exhibit pan-Trk activity rather (no residue differences in the ATP binding site)
- Isoform selectivity has been achieved with type III allosteric ligands which do not interact with the conserved hinge region

TrkA Selective/Allosteric Hit

TrkA Selective/Allosteric Hit

- The interaction of the JM domain with the ligand may explain isoform selectivity ٠
- The JM domain is less conserved across Trks
- The JM domain of TrkA is shorter than TrkB/C so likely presents a different conformation to the ligand
- The cocrystal structure shows a H-bond between the main chain N-Hs of Leu486 and Gly485 with the C=O of the • ligand

TrkA cell IC₅₀ 3.3 µM TrkB/C cell IC₅₀ >50 µM

TrkA :

TrkB

Page 9 of 20

Physio- and Biochemical Properties

Trk A IC ₅₀ (nM)	Single digit nM ideal (potent) – they chose ≤15 nM			
MW/logD _{7.4}	MW<500 (for good oral bioavailability) \checkmark Log D _{7.4} < 1 high solubility, but permeability issues, susceptible to renal clearance Log D _{7.4} 1-3 = optimal range (good balance between solubility and passive permeability) \checkmark Log D _{7.4} 3-5 = low solubility (increased metabolic liability) Log D _{7.4} > 5 = very low solubility (high metabolic clearance)			
LipE	Lipophilic efficiency (= $pIC_{50} - logD$): LipeE <3 = poor LipE 3-5 = moderate LipE 5-7 = good \checkmark e.g. lipE 6 (e.g. 9 (pIC_{50}) - 3(logP) for 1 nM inhibitor			
HLM Cl _{int} (μL/min/mg protein)	HLM $CI_{int} \le 8.6 \ \mu L = low$ HLM $CI_{int} 8.6-47 = medium$ HLM $CI_{int} \ge 47 = high$			
hHeps Cl _{int} (μL/min/ 10 ⁶ cells)	HLM $CI_{int} \le 3.5 = low$ HLM $CI_{int} 3.5-19 = medium$ HLM $CI_{int} \ge 19 = high$			
P-gp/BCRP ER (P _{app} B-A/P _{app} A-B)	 ≤1 = no significant efflux ✓ (+usually good) 2-3 = modest efflux ≥ 3 = significant efflux [✓ for a peripherally restricted drug) 			
RRCK A-B P _{app} (x 10 ⁻⁶ cms ⁻¹)	 P_{app} < 2 = low permeability P_{app} 2-20 = moderate permeability P_{app} > 20 = high permeability 			
Solubility (μM)	$<10 \ \mu\text{M} = \text{low solubility}$ $<10 \ \mu\text{g/mL} = \text{low solubility}$ $10-100 \ \mu\text{M} = \text{moderate solubility}$ $10-60 \ \mu\text{g/mL} = \text{moderate solubility}$ $>100 \ \mu\text{M} = \text{high solubility}$ $\sim 60 \ \mu\text{g/mL} = \text{high solubility}$			

TrkA Selective/Allosteric Hit

Hit

TrkA cell IC ₅₀ (μM)	3.3 🗡
TrkB/C cell IC ₅₀ (µM)	>50 µM ✔
MW/logD _{7.4}	346 ✔/3.3~
LipE	2.2 🗶
HLM Cl _{int} (µL/min/mg)	35 🗡
hHeps Cl _{int} (µL/min/mill)	48 🗡
P-gp/BCRP ER	1 <mark>×</mark> /ND
RRCK A-B P _{app} (x 10 ⁻⁶ cms ⁻¹)	30 🗸
PSA	47 🗸

Hit to Lead

Lead Properties

$\begin{array}{c} CI \\ \downarrow \\ \downarrow \\ CI \end{array} \\ \hline \\ CI \end{array}$	N, N	$\stackrel{\text{ead}}{\longrightarrow} \qquad \qquad$	peripheral Restriction: $C_{b,u}/C_{p,u} \sim 4\%$
TrkA cell IC ₅₀ (μM)	3.3 X	TrkA cell IC ₅₀ (μM)	0.050 🗡
TrkB/C cell IC ₅₀ (μM)	>50 µM ✔	TrkB/C cell IC ₅₀ (μM)	14/4.1 🗸
MW/logD _{7.4}	346 🖌/3.3~	MW/logD _{7.4}	432 ✔/2.3 ✔
LipE	2.2 🗡	LipE	5.0 🗸
HIM CL. (ul /min/mg)	35 🗶	HLM Cl _{int} (µL/min/mg)	<8 🖌
	337	hHeps Cl _{int} (µL/min/mill)	18 ~
hHeps Cl _{int} (μL/min/mill) 48 🗡		HLM UGT Cl _{int} (μL/min/mg) 29 🗡
P-gp/BCRP ER	1 <mark>X</mark> /ND	P-gp/BCRP ER	5 🗸 /7 🗸
RRCK A-B P _{app} (x 10 ⁻⁶ cms ⁻¹)	30 🗸	RRCK A-B P _{app} (x 10 ⁻⁶ cms ⁻¹	¹) 17 ~
PSA	47 🖌		
		PSA	129 🖌

Cocrystal Structure of Lead Molecule Bound to TrkA

- H-bond pyridine N/Asp688 NH
- H-bond amino NH₂/ main chain C=O Asp668
- H-bond amide C=O/ NH₂ Arg673

Lead to Candidate Optimization Strategy

SAR/ SPR: Summary

 $.NH_{2}$ TrkA cell IC₅₀ 0.050 µM TrkB/C cell IC₅₀ 14/4.1 µM LipE 5.0 H optimize LogD 2.3 Н SAR/ SPR **RRCK 17** [] 0 ĊI HLM <8, hUGT 29, hHep 18 CL 0 P-gp ER 5 NH2 BCRP ER 7 Lead O' R³ Peripheral restriction C_{bu}/C_{pu} ~ 4% Lead Entry \mathbb{R}^1 \mathbb{R}^2 R³ TrkA cell LipE RRCK BCRP LogD HLM HLM UGT hHep P-gp $IC_{50}(\mu M)$ $\mathsf{P}_{\mathsf{app}}$ ER ER Cl 0.014 🗸 4.9 🗸 <8 🗸 4.2 🗸 1 Н Н 3 🗸 <1.9 🗸 17 ~ 17 ~ ND 2 CH₃ 0.041 X 2.6 🗸 4.8~ ND 36 X 12 ~ 4.6 🗸 Н Н 46 X ND 3 Cl 0.94 🗡 ND 3.2 🗸 0.72 🗡 12 🗸 Н 0.031 X 6.6 🗸 9 ~ ND NH_2 4 Н Cl 0.014 🗸 2.8 🗸 5.1 🗸 <8 🗸 ND 9~ 12 ~ 30 🗸 ND .OH 0.010 🗸 3.3 ~ 4.7 ~ 103 🗸 5 <8 🗸 ND 4.7 ~ 16 ~ 28 🗸 Н Cl .OH

Synthesis of Candidate Molecule

Cocrystal Structure of Candidate Bound to TrkA

- H-bond Pyridine N/ Asp668 NH
- 2,4-dichloroaryl moiety occupies the lipophilic pocket
- The 4-Cl substituent results in an optimal dihedral angle of 45.8 ° between the pyridyl/aryl rings
- H-bond terminal amide C=O/ Arg673 NH₂
- Tertiary alcohol interacts with water network

Steph McCabe @ Wipf Group

PK Properties

p.o. administration (rat)

Entry	Cpd	Dose (mg/kg)	T _{1/2} (h)	Oral <i>F</i> (%)
1	lead	3	0.5	6
2	candidate	2	4	72

i.v. administration (rat)

Entry	Cpd	Dose (mg/kg)	T _{1/2} (h)	Plasma CL (mL/ min/kg)	V _d (L/kg)	C _{b,u} /C _{p/u}
1	lead	1	1.6	31.5	1.3	0.041
2	candidate	0.5	2.7	11.9	2.8	0.014

-			
-	Volume of distribution	Vd	>10 L/kg = high <1 L/kg = low
	Plasma clearance	Cl	Rat: >45 mL/min/kg = high Rat: <10 mL/min/kg = low
	Half-life	T _{1/2}	Rat: > 3 h = high Rat: < 1 h = low
	Oral bioavailability	%F	>50% = high <20% = low
	Peripheral restriction	C _{b,u} / C _{p/u}	< 0.05 = peripherally restricted

- Excellent kinome selectivity (392 kinases <15% inhibition at 10 μM)
- Ligand profiling in 84 target assays (off-target liability) (no hits with inhibition >40% at 10 μM)

Summary/ Outlook

- The tyrosine receptor kinase tropomyosin related kinase A (TrkA) is an important target in pain therapy
- TrkA isoform selectivity was achieved by developing a type III allosteric ligand
- The optimized TrkA inhibitor was highly potent, isoform-selective, orally bioavailable and peripherally restricted and nominated as a candidate for clinical development for the treatment of pain